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Abstract 

The running time and memory requirement of a parallel program with dynamic, lightweight threads depends 
heavily on the underlying thread scheduler. In this paper, we present a simple, asynchronous, space-efficient 
scheduling algorithm for shared memory machines that combines the low scheduling overheads and good 
locality of work stealing with the low space requirements of depth-first schedulers. For a nested-parallel 
program with depth D and serial space requirement Si, we show that the expected space requirement is 
Si + O (K ■ p ■ D) on p processors. Here, K is a user-adjustable runtime parameter, which provides a trade- 
off between running time and space requirement. Our algorithm achieves good locality and low scheduling 
overheads by automatically increasing the granularity of the work scheduled on each processor. 

We have implemented the new scheduling algorithm in the context of a native, user-level implementation 
of Posix standard threads or Pthreads, and evaluated its performance using a set of C-based benchmarks 
that have dynamic or irregular parallelism. We compare the performance of our scheduler with that of two 
previous schedulers: the thread library's original scheduler (which uses a FIFO queue), and a provably 
space-efficient depth-first scheduler. At a fine thread granularity, our scheduler outperforms both these 
previous schedulers, but requires marginally more memory than the depth-first scheduler. 

We also present simulation results on synthetic benchmarks to compare our scheduler with space-efficient 
versions of both a work-stealing scheduler and a depth-first scheduler. The results indicate that unlike these 
previous approaches, the new algorithm covers a range of scheduling granularities and space requirements, 
and allows the user to trade the space requirement of a program with the scheduling granularity. 



1    Introduction 

Many parallel programming languages allow the expression 
of dynamic, lightweight threads. These include data paral- 
lel languages like HPF [22] or Nesl [5] (where the sequence 
of instructions executed over individual data elements are the 
"threads"), dataflow languages like ID [16], control-parallel 
languages with fork-join constructs like Cilk [20], CC++ [13], 
and Proteus [29], languages with futures like Multilisp [39], 
and various user-level thread libraries [3, 17, 30, 43]. In the 
lightweight threads model, the programmer simply expresses 
all the parallelism in the program, while the language imple- 
mentation performs the task of scheduling the threads onto the 
processors at runtime. Thus the advantages of lightweight, 
user-level threads include the ease of programming, automatic 
load balancing, architecture-independent code that can adapt 
to a varying number of processors, and the flexibility to use 
kernel-independent thread schedulers. 

Programs with irregular and dynamic parallelism benefit 
most from the use of lightweight threads. Compile-time anal- 
ysis of such computations to partition and map the threads onto 
processors is generally not possible. Therefore, the programs 
depend heavily on the implementation of the runtime system 
for good performance. In particular, 

1. To allow the expression of a large number of threads, the 
runtime system must provide fast thread operations such as 
creation, deletion and synchronization. 

2. The thread scheduler must incur low overheads while dy- 
namically balancing the load across all the processors. 

3. The scheduling algorithm must be space efficient, that is, it 
must not create too many simultaneously active threads, or 
schedule them in an order that results in high memory al- 
location. A smaller memory footprint results in fewer page 
and TLB misses. This is particularly important for parallel 
programs, since they are typically used to solve large prob- 
lems, and are often limited by the amount of memory avail- 
able on a parallel machine. Existing commercial thread 
systems, however, can lead to poor space and time perfor- 
mance for multithreaded parallel programs, if the scheduler 
is not designed to be space efficient [35]. 

4. Today's hardware-coherent shared memory multiprocessors 
(SMPs) typically have a large off-chip data cache for each 
processor, with a latency significantly lower that the latency 
to main memory. Therefore, the thread scheduler must 
also schedule threads for good cache locality. The most 
common heuristic to obtain good locality for fine grained 
threads on multiprocessors is to schedule threads close in 
the computation graph (e.g., a parent thread along with its 
child threads) on the same processor, since they typically 
share common data [1,9, 25, 27, 31, 39]. 

Work stealing is a runtime scheduling mechanism that can 
provide a fair combination of the above requirements. Each 
processor maintains its own queue of ready threads; a pro- 
cessor steals a thread from another processor's ready queue 
only when it runs out of ready threads in its own queue. Since 
thread creation and scheduling are typically local operations, 
they incur low overhead and contention. Further, threads close 
together in the computation graph are often scheduled on the 
same processor, resulting in good locality. Several systems 
have used work stealing to provide high performance [11,17, 
18, 20, 26, 39, 42, 44]. When each processor treats its own 

ready queue as a LIFO stack (that is, adds or removes threads 
from the top of the stack) and steals from the bottom of another 
processor's stack, the scheduler successfully throttles the ex- 
cess parallelism [8, 39,41,44]. For fully strict computations, 
such a mechanism was proved to require p ■ S\ space on p 
processors, where Si is the serial, depth-first space require- 
ment [9]. A computation with W work (total number of oper- 
ations) and D depth (length of the critical path) was shown to 
require W/p+0(D) time onp processors [9]. We will hence- 
forth refer to such schedulers as work-stealing schedulers. 

Recent work [6, 34] has resulted in depth-first schedul- 
ing algorithms that require Si -I- 0(p ■ D) space for nested- 
parallel computations with depth D. For programs that have 
a low depth (a high degree of parallelism), such as all pro- 
grams in the class NC [14], the space bound of Si + 0(p ■ 
D) is asymptotically lower than the work stealing bound of 
p ■ S\. Further, the depth-first approach allows a more gen- 
eral memory allocation model compared to the stack-based al- 
locations assumed in space-efficient work stealing [6]. The 
depth-first approach has been extended to handle computa- 
tions with futures [39] or I-structures [16], resulting in similar 
space bounds [4]. Experiments showed that an asynchronous, 
depth-first scheduler often results in lower space requirement 
in practice, compared to a work-stealing scheduler [34]. How- 
ever, since depth-first schedulers use a globally ordered queue, 
they do not provide some of the practical advantages enjoyed 
by work-stealing schedulers. When the threads expressed by 
the user are fine grained, the performance may suffer due to 
poor locality and high scheduling contention (i.e., contention 
over shared data structures while scheduling) [35]. Therefore, 
even if basic thread operations are cheap, the threads have to 
be coarsened for depth-first schedulers to provide good perfor- 
mance in practice. 

In this paper, we present a new scheduling algorithm for 
implementing multithreaded languages on shared memory ma- 
chines. The algorithm, called DFDeques1, provides a compro- 
mise between previous work-stealing and depth-first sched- 
ulers. Ready threads in DFDeques are organized in multiple 
ready queues, that are globally ordered as in depth-first sched- 
ulers. The ready queues are treated as LIFO stacks similar to 
previous work-stealing schedulers. A processor steals from 
a ready queue chosen randomly from a set of high-priority 
queues. For nested-parallel (or fully strict) computations, our 
algorithm guarantees an expected space bound of Si + O (K -p ■ 
D). Here, K is a user-adjustable runtime parameter called the 
memory threshold, which specifies the net amount of memory 
a processor may allocate between consecutive steals. Since K 
is typically fixed to be a small, constant amount of memory, 
the space bound reduces to Si + 0(D ■ p), as with depth-first 
schedulers. For a simplistic cost model, we show that the ex- 
pected running time is 0( W/p + D) on p processors2. 

We refer to the total number of instructions executed in a 
thread as the thread's granularity. We also (informally) de- 
fine scheduling granularity to be the average number of in- 
structions executed consecutively on a single processor, from 
threads close together in the computation graph. Thus, a larger 
scheduling granularity typically implies better locality and 

'DFDeques stands for "depth-first deques". 
2When the scheduler in DFDeques is parallelized, the costs of all scheduling 

operations can be accounted for with a more realistic model [33]. Then, in the 
expected case, the parallel computation can be executed using Si + 0(D ■ p ■ 
log p) space and 0(W/p + D ■ log p) time (including scheduling overheads). 
However, for brevity, we omit a description and analysis of such a parallelized 
scheduler. 



lower scheduling contention. In the DFDeques scheduler, when 
a processor finds its ready queue empty, it steals a thread from 
the bottom of another ready queue. This thread is typically 
the coarsest thread in the queue, resulting in a larger schedul- 
ing granularity compared to depth first schedulers. Although 
we do not analytically prove this claim, we present experi- 
mental and simulation results to verify it. Adjusting the mem- 
ory threshold K in the DFDeques algorithm provides a user- 
controllable trade-off between scheduling granularity and 
space requirement. 

Posix threads or Pthreads have recently become a popu- 
lar standard for shared memory parallel programming. We 
therefore added the DFDeques scheduling algorithm to a na- 
tive, user-level Pthreads library [43]. Despite being one of 
the fastest user-level implementations of Pthreads today, the li- 
brary's scheduler does not efficiently support fine-grained, dy- 
namic threads. In previous work [35], we showed how its per- 
formance can be improved using a space-efficient depth-first 
scheduler. In this paper, we compare the space and time per- 
formance of the new DFDeques scheduler with the library's 
original scheduler (which uses a FIFO scheduling queue), and 
with our previous implementation of a depth-first scheduler. 
To perform the experimental comparison, we used 7 parallel 
benchmarks written with a large number of dynamically cre- 
ated Pthreads. As shown in Figure 1, the new DFDeques 
scheduler results in better locality and higher speedups com- 
pared to both the depth-first scheduler and the FIFO scheduler. 

Ideally, we would also like to compare our Pthreads-based 
implementation of DFDeques with a space-efficient work-steal- 
ing scheduler (e.g., the scheduler used in Cilk [8]). However, 
supporting the general Pthreads functionality with an exist- 
ing space-efficient work-stealing scheduler [8] would require 
significant modifications to both the scheduling algorithm and 
the Pthreads implementation3. Therefore, to compare our new 
scheduler to this work-stealing scheduler, we instead built a 
simple simulator that implements synthetic, fully-strict bench- 
marks. Our simulation results indicate that by adjusting the 
memory threshold, our new scheduler covers a wide range 
of space requirements and scheduling granularities. At one 
extreme it performs similar to a depth-first scheduler, with 
low space requirement and small scheduling granularity. At 
the other extreme, it behaves exactly like the work-stealing 
scheduler, with higher space requirement and larger schedul- 
ing granularity. 

2   Background and Previous Work 

A parallel computation can be represented by a directed acyclic 
graph; we will refer to such a computation graph as a dag in 
the remainder of this paper. Each node in the dag represents 
a single action in a thread; an action is a unit of work that re- 
quires a single timestep to be executed. Each edge in the dag 
represents a dependence between two actions. Figure 2 shows 
such an example dag for a simple parallel computation. The 
dashed, right-to-left fork edges in the figure represent the fork 
of a child thread. The dashed, left-to-right synch edges repre- 
sent a join between a parent and child thread, while each solid 
vertical continue edge represents a sequential dependence be- 
tween a pair of consecutive actions within a single thread. For 
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Even fully strict Pthreads benchmarks cannot be executed using such a 
work-stealing scheduler in the existing Solaris Pthreads implementation, be- 
cause the Pthreads implementation itself makes extensive use of blocking syn- 
chronization primitives such as Pthread mutexes and condition variables. 

root thread 

Figure 2: An example dag for a parallel computation; the 
threads are shown shaded. Each right-to-left edge represents 
a fork, and each left-to-right edge represents a synchroniza- 
tion of a child thread with its parent. Vertical edges represent 
sequential dependencies within threads. t0 is the initial (root) 
thread, which forks child threads ti,t2,h, and fc4 in that order. 
Child threads may fork threads themselves; e.g., t2 forks t5. 

computations with dynamic parallelism, the dag is revealed 
and scheduled onto the processors at runtime. 

2.1 Scheduling for locality 

Detection of data accesses or data sharing patterns among 
threads in a dynamic and irregular computation is often be- 
yond the scope of the compiler. Further, today's hardware- 
coherent SMPs do not allow explicit, software-controlled place- 
ment of data in-processor caches; therefore, owner-compute 
optimizations for locality that are popular on distributed mem- 
ory machines typically do not apply to SMPs. However, in 
many parallel programs with fine-grained threads, the threads 
close together in the computation's dag often access the same 
data. For example, in a divide-and-conquer computation (such 
as quicksort) where a new thread is forked for each recur- 
sive call, a thread shares data with all its descendent threads. 
Therefore, many parallel implementations of lightweight 
threads use per-processor data structures to store ready 
threads [17, 20, 24, 25, 39, 42,44]. Threads created on a pro- 
cessor are stored locally and moved only when required to bal- 
ance the load. This technique effectively increases scheduling 
granularity, and therefore provides good locality [7] and low 
scheduling contention. 

Another approach for obtaining good locality is to allow 
the user to supply hints to the scheduler regarding the data ac- 
cess patterns of the threads [12, 28, 37, 45]. However, such 
hints can be cumbersome for the user to provide in complex 
programs, and are often specific to a certain language or li- 
brary interface. Therefore, our DFDeques algorithm instead 
uses the heuristic of scheduling threads close in the dag on the 
same processor to obtain good locality. 

2.2 Scheduling for space-efficiency 

The thread scheduler plays a significant role in controlling the 
amount of active parallelism in a fine-grained computation. 
For example, consider a single-processor execution of the dag 
in Figure 2. If the scheduler uses a LIFO stack to store ready 
threads, and a child thread preempts its parent as soon as it 
is forked, the nodes are executed in a (left-to-right) depth-first 
order, resulting in at most 5 simultaneously active threads. In 



Benchmark Max threads L2 Cache miss rate 8 processor speedup 
FIFO ADF DFD FIFO ADF DFD FIFO ADF DFD 

Vol. Rend. 436 36 37 4.2 3.0 1.8 5.39 5.99 6.96 
Dense MM 3752 55 77 24.0 13 8.7 0.22 3.78 5.82 

Sparse MVM 173 51 49 13.8 13.7 13.7 3.59 5.04 6.29 
FFTW 510 30 33 14.6 16.4 14.4 6.02 5.96 6.38 
FMM 2030 50 54 14.0 2.1 1.0 1.64 7.03 7.47 

Barnes Hut 3570 42 120 19.0 3.9 2.9 0.64 6.26 6.97 
Decision Tr. 194 138 149 5.8 4.9 4.6 4.83 4.85 5.39 

Figure 1: Summary of experimental results with the Solaris Pthreads library. For each scheduling technique, we show the maximum 
number of simultaneously active threads (each of which requires min. 8kB stack space), the L2 cache misses rates (%), and the 
speedups on an 8-processor Enterprise 5000 SMP. "FIFO" is the original Pthreads scheduler, "ADF" is an asynchronous, depth-first 
scheduler [35], and "DFD" is our new DFDeques scheduler. 

contrast, if the scheduler uses a FIFO queue, the threads are 
executed in a breadth-first order, resulting in all 16 threads be- 
ing simultaneously active. Systems that support fine-grained, 
dynamic parallelism can suffer from such a creation of excess 
parallelism. 

Initial attempts to control the active parallelism were based 
on heuristics [3,16, 31,40, 39], which included work stealing 
techniques [31, 39]. Heuristic attempts work well for some 
programs, but do not guarantee an upper bound on the space 
requirements of a program. More recently, two different tech- 
niques have been shown to be provably space-efficient: work- 
stealing schedulers, and depth-first schedulers. 

In addition to being space efficient [8, 41], work stealing 
can often result in large scheduling granularities, by allowing 
idle processors to steal threads higher up in the dag (e.g., see 
Figure 3(a)). Several systems use such an approach to obtain 
good parallel performance [8,17,26,39,44]. 

Depth-first schedulers guarantee an upper bound on the 
space requirement of a parallel computation by prioritizing 
its threads according to their serial, depth-first execution or- 
der [6, 34]. In a recent paper [35], we showed that the per- 
formance of a commercial Pthreads implementation could be 
improved for predominantly nested-parallel benchmarks using 
a depth-first scheduler. However, depth-first schedulers can re- 
sult in high scheduling contention and poor locality when the 
threads in the program are very fine grained [34, 35] (see Fig- 
ure 3). 

The next section describes a new scheduling algorithm that 
combines ideas from the above two space-efficientapproaches. 

3   The DFDeques Scheduling Algorithm 

We first describe the programming model for the multithreaded 
computations that are executed by the DFDeques scheduling 
algorithm. We then list the data structures used by the sched- 
uler, followed by a description of the DFDeques scheduling 
algorithm. 

3.1   Programming model 

As with depth-first schedulers, our scheduling algorithm ap- 
plies to pure, nested-parallel computations, which can be mod- 
eled by series-parallel dags [6]. Nested-parallel computations 
are equivalent to the subset of fully strict computations sup- 
ported by Cilk's space-efficient work-stealing scheduler [8, 

Figure 3: Possible mappings of threads of the dag in Figure 2 
onto processors P0,...,PS by (a) work-stealing schedulers, 
and (b) depth-first schedulers. If, say, the ith thread (going 
from left to right) accesses the ith block or element of an ar- 
ray, then scheduling consecutive threads on the same processor 
provides better cache locality and lower scheduling overheads. 

20]. Nested parallelism can be used to express a large variety 
of parallel programs, including recursive, divide-and-conquer 
programs and programs with nested-parallel loops. Our model 
assumes binary forks and joins; the example dag in Figure 2 
represents such a nested-parallel computation. 

Although we describe and analyze our algorithm for nested- 
parallel computations, in practice it can be extended to exe- 
cute programs with other styles of parallelism. For example, 
the Pthreads scheduler described in Section 5 supports com- 
putations with arbitrary synchronizations, such as mutexes and 
condition variables. However, our analytical space bound does 
not apply to such general computations. 

A thread is active if it has been created but has not yet ter- 



Figure 4: The serial, depth-first execution order for a nested- 
parallel computation. The ith node executed is labelled i in 
this dag; the lower the label of a thread's current node (action), 
the higher is its priority in DFDeques. 

minated. A parent thread waiting to synchronize with a child 
thread is said to be suspended. We say an active thread is 
ready to be scheduled if it is not suspended, and is not cur- 
rently being executed by a processor. Each action in a thread 
may allocate an arbitrary amount of space on the thread stack, 
or on the shared heap. 

Every nested-parallel computation has a natural serial exe- 
cution order, which we call its depth-first order. When a child 
thread is forked, it is executed before its parent in a depth- 
first execution (e.g., see Figure 4). Thus, the depth-first or- 
der is identical to the unique serial execution order for any 
stack-based language (such as C), when the thread forks are 
replaced by simple function calls. Algorithm DFDeques pri- 
oritizes ready threads according to their serial, depth-first ex- 
ecution order; an earlier serial execution order translates to a 
higher priority. 

3.2 Scheduling data structures 

Although the dag for a computation is revealed as the execu- 
tion proceeds, dynamically maintaining the relative thread pri- 
orities for nested-parallel computations is straightforward [6] 
and inexpensive in practice [34]. In algorithm DFDeques, 
the ready threads are stored in doubly-ended queues or de- 
ques [15]. Each of these deques supports popping from and 
pushing onto its top, as well as popping from the bottom of the 
deque. At any time during the execution, a processor owns at 
most one deque, and executes threads from it. A single deque 
has at most one owner at any time. However, unlike traditional 
work stealing, the number of deques may exceed the number 
of processors. All the deques are arranged in a global list H of 
deques. The list supports adding of a new deque to the imme- 
diate right of another deque, deletion of a deque, and finding 
the m    dequeue from the left end of 11. 

3.3 The DFDeques scheduling algorithm 

The processors execute the code in Figure 5 for algorithm 
DFDeques(K); here K is the memory threshold, a user-defined 
runtime parameter. Each processor treats its own deque as 
a regular LIFO stack, and is assigned a memory quota of K 
bytes from which to allocate heap and stack data. This mem- 
ory threshold K is equivalent to the per-thread memory quota 
in depth-first schedulers [34]; however, in algorithm DFDe- 
ques, the memory quota of K bytes can be used by a proces- 
sor to execute multiple threads from one deque. A thread exe- 
cutes without preemption on a processor until it forks a child 
thread, suspends waiting for a child to terminate, terminates, 
or the processorruns out of its memory quota. If a terminating 
thread wakes up its previously suspended parent, the processor 

while (3 threads) 
if (currS = NULL) CUTTS := steal(); 
if (currT = NULL) cunT := pop_from.top(currS); 
execute currT until it forks, suspends, terminates, 

or memory quota exhausted: 
case (fork): 

pushJo_top(currT, currS); 
currT := newly forked child thread; 

case (suspend): 
currT := NULL; 

case (memory quota exhausted): 
pusluto_top(currT, currS); 
currT := NULL; 
currS := NULL;    /* give up stack */ 

case (terminate): 
if currT wakes up suspended parent T' 

currT := T'; 
else currT := NULL; 

if ((is-empty(currS)) and (currT= NULL)) 

currS := NULL;  /* give up and delete stack */ 
endwhile 

procedure steal(): 
set memory quota to K; 
while (TRUE ) 

m := random number in [1... p]; 
S := m"1 deque in H; 
T:=pop_from.bot(S); 
if (T^ NULL) 

create new deque S' containing T 
and become its owner; 

place S' to immediate right of S in 7J; 
returns'; 

Figure 5: Pseudocode for the DFDeques(K) scheduling algo- 
rithm executed by each of the p processors; K is the memory 
threshold. currS is the processor's current deque. currT is 
the current thread being executed; changing its value denotes 
a context switch. Memory management of the deques is not 
shown here for brevity. 

starts executing the parent next; for nested parallel computa- 
tions, we can show that the processor's deque must be empty at 
this stage [33]. When an idle processor finds its deque empty, 
it deletes the deque. When a processor deletes its deque, or 
when it gives up ownership of its deque due to exhaustion of 
its memory quota, it uses the steal () procedure to obtain 
a new deque. Every invocation of steal () resets the pro- 
cessor's memory quota to K bytes. We call an iteration of the 
loop in the steal () procedure a steal attempt. 

A processor executes a steal attempt by picking a random 
number m between 1 and p, where p is the number of proces- 
sors. It then tries to steal the bottom thread from the mth 

deque (starting from the left end) in H. A steal attempt 
may fail (that is, pop.fronubot () returns NULL) if two or 
more processors target the same deque (see Section 4.1), or 
if the deque is empty or non-existent. If the steal attempt is 
successful (pop-f rortubot () returns a thread), the stealing 
processor creates a new deque for itself, places it to the imme- 
diate right of the target deque, and starts executing the stolen 
thread. Otherwise, it repeats the steal attempt. When a proces- 
sor steals the last thread from a deque not currently associated 
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Figure 6: The list H of deques maintained in the system by al- 
gorithm DFDeques. Each deque may have one (or no) owner 
processor. The dotted line traces the decreasing order of prior- 
ities of the threads in the system; thus ta in this figure has the 
highest priority, while h has the lowest priority. 

with (owned by) any processor, it deletes the deque. 
If a thread contains an action that performs a memory al- 

location of m units such that m > K (where K is the mem- 
ory threshold), then \m/K\ dummy threads must be forked 
in a binary tree of depth ©(log mjK) before the allocation4. 
We do not show this extension in Figure 5 for brevity. Each 
dummy thread executes a no-op. However, processors must 
give up their deques and perform a steal every time they exe- 
cute a dummy thread. Once all the dummy threads have been 
executed, a processor may proceed with the memory alloca- 
tion. This transformation takes place at runtime. The addition 
of dummy threads effectively delays large allocations of space, 
so that higher priority threads may be scheduled instead. In 
practice, K is typically set to a few thousand bytes, so that the 
runtime overhead due to the dummy threads is negligible {e.g., 
see Section 5). 

We now prove a lemma regarding the order of threads in 
% maintained by algorithm DFDeques; this order is shown 
pictorially in Figure 6. 

Lemma 3.1 Algorithm DFDeques maintains the following 
ordering of threads in the system. 

1. Threads in each deque are in decreasing order of priorities 
from top to bottom.' 

2. A thread currently executing on a processor has higher pri- 
ority than all other threads on the processor's deque. 

3. The threads in any given deque have higher priorities than 
threads in all the deques to its right in 11. 

Proof. By induction on the timesteps. The base case is the 
start of the execution, when the root thread is the only thread 
in the system. Let the three properties be true at the start of 
any subsequent timestep. Any of the following events may 
take place on each processor during the timestep; we will show 
that the properties continue to hold at the end of the timestep. 

When a thread forks a child thread, the parent is added to 
the top of the processor's deque, and the child starts execution. 
Since the parent has a higher priority that all other threads in 
the processor's deque (by induction), and since the child thread 
has a higher priority (earlier depth-first execution order) than 
its parent, properties (1) and (2) continue to hold.  Further, 

4This transformation differs slightly from depth-first schedulers [6, 34], 
which allow dummy threads to be forked in a multi-way fork of constant depth. 

since the child now has the priority immediately higher than 
its parent, property (3) holds. 

When a thread T terminates, the processor checks if T 
has reactivated a suspended parent thread Tp. In this case, 
it starts executing Tp. Since the computation is nested paral- 
lel, the processor's deque must now be empty (since the parent 
Tp must have been stolen at some earlier point and then sus- 
pended). Therefore, all 3 conditions continue to hold. If T did 
not wake up its parent, the processorpicks the next thread from 
the top its deque. If the deque is empty, it deletes the deque 
and performs a steal. Therefore all three properties continue 
to hold in these cases too. 

When a thread suspends or is preempted due to exhaustion 
of the processor's memory quota, it is put back on the top of its 
deque, and the deque retains its position in 11. Thus all three 
properties continue to hold. 

When a processor steals the bottom thread from another 
deque, it adds the new deque to the right of the target deque. 
Since the stolen thread had the lowest priority in the target 
deque, the properties continue to hold. Similarly, removal of a 
thread from the target deque does not affect the validity of the 
three properties for the target deque. A thread may be stolen 
from a processor's deque while one of the above events takes 
place on the processor itself; this does not affect the validity 
of our argument. 

Finally, deletion of one or more deques from H does not 
affect the three properties. ■ 

Work stealing as a special case of algorithm DFDeques. 
Consider the case when we set the memory threshold K — 
oo. Then, for nested-parallel computations, algorithm DFD- 
eques (oo) produces a schedule identical to the one produced 
by the provably-efficient work-stealing scheduler "WS" [9]. 
The processors in DFDequesoo never give up a deque due to 
exhaustion of their memory quota, and therefore, as with the 
work stealer, there are never more than p deques in the sys- 
tem. Further, in both algorithms, when a processor's deque 
becomes empty, it picks another processor uniformly at ran- 
dom, and steals the bottommost thread from that processor's 
deque. Similarly, for nested parallel computations, the rule for 
waking up a suspended parent in DFDeques(oo) is equivalent 
to the corresponding rule in WS5. Of course, the schedules are 
identical assuming the same cost model for both algorithms; 
the model could be either the atomic-access model used to an- 
alyze WS [9], or our cost model from Section 4.1. 

4   Analysis of Time and Space Bounds Us- 
ing Algorithm DFDeques 

We now prove the space and time bounds for nested-parallel 
computations. 

4.1   Cost model 

We define the total number of unit actions in a parallel com- 
putation (or the number of nodes in its dag) as its work W. 
Further, let D be the depth of the computation, that is, the 
length of the longest path in its dag. For example, the com- 
putation represented in Figure 4 has work W = 11 and depth 

5In WS, the reawakened parent is placed added to the current processor's 
deque (which is empty); for nested parallel computations, the child must termi- 
nate at this point, and therefore, the next thread executed by the processor is the 
parent thread. 



D = 6. We assume that an allocation of m bytes of memory 
(for any m > 0) has a depth of ©(log m) units6. 

For this analysis, we assume that timesteps (clock cycles) 
are synchronized across all the processors. If multiple proces- 
sors target a non-empty deque in a single timestep, we assume 
that one of them succeeds in the steal, while all the others fail 
in that timestep. If the deque targeted by one or more steals is 
empty, all of those steals fail in a single timestep. When a steal 
fails, the processor attempts another steal in the next timestep. 
When a steal succeeds, the processor inserts the newly cre- 
ated deque into % and executes the first action from the stolen 
thread in the same timestep. At the end of a timestep, if a 
processor's current thread terminates or suspends, and it finds 
its deque to be empty, it immediately deletes its deque in that 
timestep. Similarly, when a processor steals the last thread 
from a deque not currently associated with any processor, it 
deletes the deque in that timestep. Thus, at the start of a 
timestep, if a deque is empty, it must be owned by a processor 
that is busy executing a thread. 

Our cost model is somewhat simplistic, because it ignores 
the cost of maintaining the ordered set of deques 11. If we par- 
allelize the scheduling tasks of inserting and deleting deques 
in 11 (by performing them lazily), we can account for all their 
overheads in the time bound. We can then show that in the 
expected case, the computation can be executed in 0(W/p + 
D ■ logp) time and Si + 0(p • logp • D) space on p proces- 
sors, including the scheduling overheads [33]. In practice, the 
insertions and deletions of deques from V, can be either serial- 
ized and protected by a lock (for small p), or performed lazily 
in parallel (for large p). 

4.2   Space bound 

We now analyze the space bound for a parallel computation 
executed by algorithm DFDeques. The analysis uses several 
ideas from previous work [2, 6, 34]. 

Let G be the dag that represents the parallel computation 
being executed. Depending on the resulting parallel schedule, 
we classify its nodes (actions) into one of two types: heavy and 
light. Every time a processor performs a steal, the first node 
it executes from the stolen thread is called a heavy action. All 
remaining nodes in G are labelled as light. 

We first assume that every node allocates at most K space; 
we will relax this assumption in the end. Recall that a proces- 
sor may allocate at most K space between consecutive steals; 
thus, it may allocate at most K space for every heavy node it 
executes. Therefore, we can attribute all the memory allocated 
by light nodes to the last heavy node that precedes them. This 
results in a conservative view of the total space allocation. 

Let sp = Vi,..., VT be the parallel schedule of the dag 
generated by algorithm DFDeques(K). Here V, is the set of 
nodes that are executed at timestep i. Let s\ be the serial, 
depth-first schedule or the iDF-schedule for the same dag; 
e.g., the nodes in Figure 4 are numbered according to their 
order of execution in a 1 DF-schedule. 

We now view an intermediate snapshotof the parallel sched- 
ule sp. At any timestep 1 < j < T during the execution of 
sp, all the nodes executed so far form a prefix of sp. This pre- 
fix of sp is defined as <rp = \J3

i_1 V;. Let <j\ be the longest 
prefix of si containing only nodes in crp, that is, o\  C <rp. 

6This is a reasonable assumption in systems with binary forks that zero out 
the memory as soon as it is allocated. The zeroing then requires a minimum 
depth of ©(log m); it can be performed in parallel by forking a tree of height 
©(logm). 

Then the prefix a\ is called the corresponding serial prefix of 
ap. The nodes in the set <xp — <TI are called premature nodes, 
since they have been executed out of order with respect to the 
lDF-schedulesj. All other nodes in ap, that is, the set<ri,are 
called non-premature. For example, Figure 7 shows a simple 
dag with a parallel prefix av for an arbitrary p-schedule sp, its 
corresponding serial prefix <TI , and a possible classification of 
nodes as heavy or light. 

A ready thread being present in a deque is equivalent to 
its first unexecuted node (action) being in the deque, and we 
will use the two phrases interchangeably. Given a p-schedule 
sp of a dag G generated by algorithm DFDeques, we can find 
a unique last parent for every node in G (except for the root 
node) as follows. The last parent of a node u in G is defined 
as the last of u's parent nodes to be executed in the sched- 
ule Sp. If two or more parent nodes of u were the last to be 
executed, the processor executing one of them continues exe- 
cution of «'s thread. We label the unique parent of u executed 
by this processor as its last parent. This processor may have 
to preempt it's thread without executing u if it runs out of its 
memory quota; in this case, it puts «'s thread on to its deque 
and then gives up the deque. 

Consider the prefix ov of the parallel schedule sp after the 
first j timesteps, for any 1 < j < r. Let v be the last non- 
premature node (i.e., the last node from cr\) to be executed 
during the first j timesteps of sp. If more than one such node 
exist, let v be any one of them. Let P be a set of nodes in the 
dag constructed as follows: P is initialized to {v}; for every 
node « in P, the last parent of u is added to P. Since the 
root is the only node at depth 1, it must be in P, and thus, P 
contains exactly all the nodes along a particular path from the 
root to v. Further, since v is non-premature, all the nodes in P 
are non-premature. 

Let u, be the node in P at depth i; then m is the root, 
and u( is the node v, where 5 is the depth of v. Let t{ be the 
timestep in which u, is executed; then t\ = 1 since the root 
is executed in the first timestep. For i = 2,..., o" let /, be the 
interval {t,_i + l,...,t,}, and let/i ={1}. Let/«+i = 
{tf, + 1,..., j}. Since <TP consists of all the nodes executed 
in the first j timesteps, the intervals h,..., Is+i cover the 
duration of execution of all nodes in ap. 

We first prove the following lemma regarding the nodes in 
a deque below any of the nodes m in P. 

Lemma 4.1 For any 1 < i < S, let u; be the node in P at 
depth i. Then, 

1. If during the execution s«, is on some deque, then every node 
below it in its deque is the right child of some node in P. 

2. When u, is executed on a processor, every node on the pro- 
cessor's deque must be the right child of some node in P. 

Proof. We can prove this lemma to be true for any u, by 
induction on i. The base case is the root node. Initially it is 
the only node in its deque, and gets executed before any new 
nodes are created. Thus, the lemma is trivially true. Let us 
assume the lemma is true for all u3, for 0 < j < i. We must 
prove that it is true for «,-+1. 

Since u, is the last parent of «i+i, u;+i becomes ready 
immediately after m is executed on some processor. There are 
two possibilities: 

1. «,+ i is executed immediately following ui on that proces- 
sor. Property (1) hold trivially since «,+i is never put on a 
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Figure 7: (a) An example snapshot of a parallel schedule for a simple dag. The shaded nodes (the set of nodes in <rp) have been 
executed, while the blank (white) nodes have not. Of the nodes in ap, the black nodes form the corresponding parallel prefix <n, 
while the remaining grey nodes are premature, (b) A possible partitioning of nodes in erp into heavy and light nodes. Each shaded 
region denotes the set of nodes executed consecutively in depth-first order on a single processor (Pi , P2, P3 or P4) between steals. 
The heavy node in each region is shown shaded black. 

deque. If the deque remains unchanged before «;+1 is exe- 
cuted, property (2) holds trivially for ui+1. Otherwise, the 
only change that may be made to the deque is the addition 
of the right child of w before u;+i is executed, if u; was 
a fork with m+i as its left child. In this case too, property 
(2) holds, since the new node in the deque is right child of 
some node in P. 

2. «i+i is added to the processor's deque after u, is executed. 
This may happen because u; was a fork and u;+i was its 
right child (see Figure 8), or because the processor exhausted 
its memory quota. In the former case, since ui+1 is the right 
child of m, nothing can be added to the deque before «;+1. 
In the latter case (that is, the memory quota is exhausted be- 
fore u;+i is executed), the only node that may be added to 
the deque before m+1 is the right child of u,-, if u; isafork. 
This does not violate the lemma. Once «;+1 is added to the 
deque, it may either get executed on a processor when it be- 
comes the topmost node in the deque, or it may get stolen. 
If it gets executed without being stolen, properties (1) and 
(2) hold, since no new nodes can be added below u;+i in 
the deque. If it is stolen, the processor that steals and ex- 
ecutes it has an empty deque, and therefore properties (1) 
and (2) are true, and continue to hold until m+1 has been 
executed. 

Recall that heavy nodes are a property of the parallel schedule, 
while premature nodes are defined relative to a given prefix of 
the parallel schedule. To prove the space bound, we first bound 
the number of heavy premature nodes in an arbitrary prefix ap 
of sp. 

Lemma 4.2 Let ap be any parallel prefix of a p-schedule pro- 
duced by algorithm DFDeques(K) for a computation with 
depth D, in which every action allocates at most K space. 
Then the expected number of heavy premature nodes in ap is 
0(p ■ D). Further, for any e > 0, the number of heavy pre- 
mature nodes is 0(p ■ (D + ln(l/e))) with probability at least 
1-e. 

Proof. Consider the start of any interval /; of up, for i = 
I,..., 6 (we will look at the last interval Ig+i separately). By 

Lemma 3.1, all nodes in the deques to the left of u,'s deque, 
and all nodes above w in its deque are non-premature. Let xi 
be the number of nodes below ui in its deque. Because steals 
target the first p deques in 11, heavy premature nodes can be 
picked in any timestep from at most p deques. Further, every 
time a heavy premature node is picked, the deque containing 
ui must also be a candidate deque to be picked as a target for 
a steal; that is, m must be among the leftmost p deques. Con- 
sider only the timesteps in which w, is among the leftmost p 
deques; we will refer to such timesteps as candidate timesteps. 
Because new deques may be created to the left of «, at any 
time, the candidate timesteps need not be contiguous. 

We now bound the total number of steal attempts that take 
place during the candidate timesteps. Each such steal attempt 
may result in the execution of a heavy premature node; steals 
in all other timesteps result in the execution of heavy, but non- 
premature nodes. Each timestep can have at most p steal at- 
tempts. Therefore, we can partition the candidate timesteps 
into phases, such that each phase has between p and 2p — 1 
steal attempts. We call a phase in interval /, successful if at 
least one of its O(p) steal attempts targets the deque contain- 
ing ui. Let Xij be the random variable with value 1 if the 
jth phase in interval /; is successful, and 0 otherwise. Be- 
cause targets for steal attempts are chosen at random from the 
leftmost p deques with uniform probability, and because each 
phase has at least P steal attempts, 

Pr[Xy = l]    >    1- ( 1 - - 
P 

> 1- - e 

> I 
-    2 

Thus, each phase succeeds with probability greater than 1/2. 
Because u; must get executed before or by the time x,, + 1 
successful steals target ui's deque, there can be at most xi + 1 
successful phases in interval I,. The node u, may get exe- 
cuted before Xi +1 steal attempts target its deque, if its owner 
processor executes «,- off the top of the deque. Let there be 
some ni < (xi + 1) successful phases in the interval /,. From 
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Figure 8: (a) A portion of the dynamically unfolding dag during the execution. Node «,+1 along the path P is ready, and is currently 
present in some deque. The deque is shown in (b); all nodes below u,-+1 on the deque must be right children of some nodes on P 
above u,+1. In this example, node u;+1 was the right child of u,, and was added to the deque when the fork at u, was executed. 
Subsequently, descendents of the left child of u, (e.g., node d), may be added to the deque above «,-+1. 

Lemma 4.1, the x-i nodes below u, are right children of nodes 
in P. There are (5 — 1) < D nodes along P not including us, 
and each of them may have at most one right child. Further, 
each successful phase in any of the first 5 intervals results in at 
least one of these right children (or the current ready node on 
P) being executed. Therefore, the total number of successful 
phases in the first 5 intervals is 5Zi=1 n, < 2D. 

Finally, consider the final phase Is+i- Let z be the ready 
node at the start of the interval with the highest priority. Then, 
z & crp, because otherwise z (or some other node), and not v, 
would have been the last non-premature node to be executed 
in ap. Hence, if z is about to be executed on a processor, 
then interval 7^+i is empty. Otherwise, z must be at the top 
of the leftmost deque at the start of interval h+\. Using an 
argument similar to that of Lemma 4.1, we can show that the 
nodes below z in the deque must be right children of nodes 
along a path from the root to z. Thus, z can have at most (D — 
2) nodes below it. Because z must be among the leftmost p 
deques throughout the interval Is+1, the phases in this interval 
are formed from all its timesteps. We call a phase successful 
in interval Is +i if at least one of the 0(p) steal attempts in the 
phase targets the deque containing z. Then this interval must 
have less than D successful phases. As before, the probability 
of a phase being successful is at least 1/2. 

We have shown that the first j < r timesteps of the par- 
allel execution (i.e., the time within which nodes from <rp are 
executed) must have < 3D successful phases. Each phase 
may result in 0(p) heavy premature nodes being stolen and 
executed. Further, for i = 1, ...,<$, in each interval /,, an- 
other p — 1 heavy premature nodes may be executed in the 
same timestep that u, is executed. Therefore, if <rp has a total 
of N phases, the number of heavy premature nodes in <jp is 
at most (N + D) ■ p. Because the entire execution must have 
less than 3D successful phases, and each phase succeeds with 
probability > 1/2, the expected number of total phases before 
we see 3D successful phases is at most 6D. Therefore, the 
expected number of heavy premature nodes in cp is at most 
(6D + D)p= 0(pD). 

The high probability bound can be proved as follows. Sup- 
pose the execution takes at least 12Ö+8 ln( 1/e) phases. Then 

the expected number of successful phases is at least (i = 6D + 
41n(l/e). Using the Chernoff bound [32, Theorem 4.2] on 
the number of successful phases X, and setting a = &D + 
81n(l/e), we get7 

Pr[X<fi-a/2]    <    exp 

Therefore, 

Pr[(A'<3D)]    <    exp 

~(°/2)2 

2/j 

-a2/4 

exp 

12D + 81n(l/e) 
„2 

4-(2a-81n(l/e)) 

<    e -a
2/8a 

=    e~a'B 

—      e-(6D+81n(l/e))/8 

<      e-81n(l/E)/8 

=    e 

Because there can be at most 3D successful phases, algo- 
rithm DFDeques requires 12Z? + 81n(l/e) or more phases 
with probability at most e. Recall that each phase consists of 
0(p) steal attempts. Therefore, av has 0(p ■ (D + ln(l/e))) 
heavy premature nodes with probability at least 1 — e. I 

We can now state a lemma relating the number of heavy pre- 
mature nodes in <rp with the memory requirement of sp. 

Lemma 43 Let Gbea dag with depth D, in which every node 
allocates at most K space, and for which the serial depth- 
first execution requires S\ space. Let sp be the p-schedule of 
length T generated for G by algorithm DFDeques(K). If for 
any i such that 1 < i < T, the prefix <rp of sp representing 
the computation after the first i timesteps contains at most r 

The probability of success for a phase is not necessarily independent of 
previous phases; however, because each phase succeeds with probability at least 
1 / 2, independent of other phases, we can apply the Chernoff bound. 
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Figure 9: An example scenario when a processor may not ex- 
ecute a contiguous subsequence of nodes between steals. The 
shaded regions indicate the subset of nodes executed on each 
of the two processors, Pa and Pb. Here, processor Pa steals 
the thread t and executes node u. It then forks a child thread 
(containing node v), puts thread t on its deque, and starts exe- 
cuting the child. In the mean time, processor Pb steals thread 
t from the deque belonging to Pa, and executes it until it sus- 
pends. Subsequently, Pa finished executing the child thread, 
and wakes up the suspended parent t and resumes execution 
of t. The combined sets of nodes executed on both processors 
forms a contiguous subsequence of lDF-schedule. 

heavy premature nodes, then the parallel space requirement of 
sp is at most Si + r ■ min(A', Si). Further, there are at most 
D + r ■ min(K, Si) active threads during the execution. 

Proof. We can partition ap into the set of non-premature 
nodes and the set of premature nodes. Since, by definition, 
all non-premature nodes form some serial prefix of the 
lDF-schedule, their net memory allocation cannot exceed Si. 
We now bound the net memory allocated by the premature 
nodes. Consider a steal that results in the execution of a heavy 
premature node on a processor Pa. The nodes executed by Pa 

until its next steal, cannot allocate more than K space. Be- 
cause there are at most r heavy premature nodes executed, the 
total space allocated across all processors after i timesteps can- 
not exceed Si +r ■ K. 

We can now obtain a tigher bound when K > Si. Con- 
sider the case when processor Pa steals a thread and executes 
a heavy premature node. The nodes executed by Pa before 
the next steal are all premature, and form a series of one or 
more subsequences of the lDF-schedule. The intermediate 
nodes between these subsequences (in depth-first order) are 
executed on other processors (e.g., see Figure 9). These in- 
termediate nodes occur when other processors steal threads 
from the deque belonging to Pa, and finish excecuting the 
stolen threads before Pa finishes executing all the remaining 
threads in its deque. Subsequently, when Pa 's deque becomes 
empty, the thread executing on Pa may wake up its parent, 
so that Pa starts executing the parent without performing an- 
other steal. Therefore, the set of nodes executed by Pa before 
the next steal, possibly along with premature nodes executed 
on other processors, form a continguous subsequence of the 
lDF-schedule. 

Assuming that the net space allocated during the 1 DF-schedule 
can never be negative, this subsequence cannot allocate more 
than Si units of net memory. Therefore, the net memory allo- 

cation of all the premature nodes cannot exceed r ■ min( K, Si), 
and the total space allocated across all processors after % timesteps 
cannot exceed Si+r- min(A', Si). Because this bound holds 
for every prefix of sp, it holds for the entire parallel execution. 

The maximum number of active threads is at most the num- 
ber of threads with premature nodes, plus the maximum num- 
ber of active threads during a serial execution, which is D. 
Assuming that each thread needs to allocate at least a unit 
of space when it is forked (e.g., to store its register state), at 
most min( A', Si) threads with premature nodes can be forked 
for each heavy premature node executed. Therefore, the total 
number of active threads is at most D + r ■ min (K, Si).     ■ 

Note that each active thread requires at most a constant 
amount of space to be stored by the scheduler (not including 
stack space). We now extend the analysis to handle large allo- 
cations. 

Handling large allocations of space. We had assumed ear- 
lier in this section that every node allocates at most K units 
of memory. Individual nodes that allocate more than K space 
are handled as described in Section 3. The key idea is to delay 
the big allocations, so that if threads with higher priorities be- 
come ready, they will be executed instead. The solution is to 
insert before every allocation of TO bytes (TO > A'), a binary 
fork tree of depth log(TO/A'), so that TO/K dummy threads 
are created at its leaves. Each of the dummy threads simply 
performs a no-op that takes one timestep, but the threads at 
the leaves of the fork tree are treated as if it were allocating 
K space; a processor gives up its deque and performs a steal 
after executing each of these dummy threads. Therefore, by 
the time the TO/A' dummy threads are executed, a processor 
may proceed with the allocation of TO bytes without exceeding 
our space bound. Recall that in our cost model, an allocation 
of TO bytes requires a depth of 0(log TO); therefore, this trans- 
formation of the dag increases its depth by at most a constant 
factor. This transformation takes place at runtime, and the on- 
line DFDeques algorithm generates a schedule for this trans- 
formed dag. Therefore, the final bound on the space require- 
ment of the generated schedule, using Lemmas 4.2 and 4.3, is 
stated below. 

Theorem 4.4 (Upper bound on space requirement) 
Consider a nested-parallel computation with depth D and se- 
rial, depth-first space requirement Si. Then, for any K > 0, 
the expected value of the space required to execute the com- 
putation on p processors using algorithm DFDeques(K), in- 
cluding the space required to store active threads, is Si + 
0(min(K, Si) ■ p ■ D). Further, for any e > 0, the proba- 
bility that the computation requires Si + 0(min(A', Sx) • p ■ 
(D + ln(l/e))) space is at least 1 — e. ■ 

We now show that the above space bound is tight (within 
constant factors) in the expected case, for algorithm DFDe- 
ques. 

Theorem 4.5 (Lower bound on space requirement) 
For any Si > 0, p > 0, K > 0, and D > 24 log p, there 
exists a nested parallel dag with a serial space requirement 
of Si and depth D, such that the expected space required 
by algorithm DFDeques(K) to execute it on p processors is 
fi(Si+min(A',Si)-p-D). 

Proof. Consider the dag shown in Figure 10. The black nodes 
denote allocations, while the grey nodes denote deallocations. 



The dag essentially has the a fork tree of depth log(p/2), at 
the leaves of which exist subgraphs8. The root nodes of these 
subgraphs are labelled «i,«2,...,«„, where n = p/2. The 
leftmost of these subgraphs, G'0, shown in Figure 10 (b), con- 
sists of a serial chain of d nodes. The remaining subgraphs are 
identical, have a depth of 2d + 1, and are shown in Figure 10 
(c). The amount of space allocated by each of the black nodes 
in these subgraphs is defined as A = min (A', Si). Since we 
are constructing a dag of depth D, the value of d is set such 
that 2d + 1 + 2 log (p/2) = D. The space requirement of a 
lDF-schedulefor this dag is Si. 

We now examine how algorithm DFDeques(K) would ex- 
ecute such a dag. One processor starts executing the root node, 
and executes the left child of the current node at each timestep. 
Thus, within log(p/2) = log n timesteps, it will have exe- 
cuted node ui. Now consider node un; it is guaranteed to be 
executed once log n successful steals target the root thread. 
(Recall that the right child of a forking node, that is, the next 
node in the parent thread, must be executed either before or 
when the parent thread is next stolen.) Because there are al- 
ways n = p/2 processors in this example that are idle and at- 
tempt steals targetting p deques at the start of every timestep, 
the probability P3teai that a steal will target a particular deque 
is given by 

steal >      1-1- 

-1/2 

P/2 

> 1-e' 
1 

> 3 

We call a timestep i successful if some node along the path 
from the root to u„ gets executed; this happens when a steal 
targets the deque containing that node. Thus, after log n suc- 
cessful timesteps, node u„ must get executed; after that, we 
can consider every subsequent timestep to be successful. Let 
S be the number of successful timesteps in the first 12 log n 
timesteps. Then, the expected value is given by 

E[S]    >    121ogn.Psteal 

>    4 log n 

Using the Chernoff bound [32, Theorem 4.2] on the number of 
successful timesteps, we have 

Pr[S<(l-|).E[S]]    <    exp[-(|) 
E[5] 

Therefore, 

Pr[S < log n]    <    exp ■ log nj 

<    e 

exp 

1.62 In n 

9    Inn 
8 ' ln2j 

=    n -0.62 1 
n 

2 1     r <    - • —    for p > 4 
3 n 

Recall that n = p/2. (The case of p < 4 can be easily han- 
dled separately.) Let £, be the event that node w, is not ex- 
ecuted within the first 12 log n timesteps. We have showed 
that Pr[.fn] < 2/3 • 1/n. Similarly, we can show that for 
each i =  l,...,n - 1, Pr[£]  <  2/3 • 1/n.   Therefore, 
Pr[U" £i\ < 2/3- T*11"' for ' = !. • • • -». a11 *e «; nodes 
get executed within the first 12 log n timesteps with probabil- 
ity greater than 1/3. 

Each subgraph G has d nodes at different depths that al- 
locate memory; the first of these nodes cannot be executed 
before timestep log n. Let t be the first timestep at which 
all the u, nodes have been executed. Then, at this timestep, 
there are at least (d + log n — t) nodes remaining in each sub- 
graph G that allocate A bytes each, but have not yet been ex- 
ecuted. Similarly, node w in sugraph G0 will not be executed 
before timestep (d + log n), that is, another (d + log n — 
t) timesteps after timestep t. Therefore, for the next (d + 
log n — t) timesteps there are always n — 1 = (p/2) - 1 
non-empty deques (out of a total of p deques) during the ex- 
ecution. Each time a thread is stolen from one of these de- 
ques, a black node (see Figure 10 (c)) is executed, and the 
thread then suspends. Because p/2 processors become idle 
and attempt a steal at the start of each timestep, we can show 
that in the expected case, at least a constant fraction of the 
p/2 steals are successful in every timestep. Each successful 
steal results in A = min(5i, A') units of memory being al- 
located. Consider the case when t = 12 log n, Then, using 
linearity of expectations, over the d — 11 log n timesteps after 
timestep t, the expected value of the total space allocated is 
Si+Q(A-p-(d- 11 log n)) = Si+Q(A-p-(D- logp)). 
(D > 24 logp ensures that (d - 11 log n) > 0.) 

We showed that with constant probability (> 1/3), all the 
u, nodes will be executed within the first 12 log n timesteps. 
Therefore, in the expected case, the space allocated (at some 
point during the execution after all u, nodes have been exe- 
cuted) is fi(Si + min(Si, A') • (D - logp) ■ p). I 

Corollary 4.6 (Lower bound using work stealing) 
For any Si > 0, p > 0, and D > 24 log p, there exists a 
nested parallel dag with a serial space requirement of Si and 
depth D, such that the expected space required to execute it 
using the space-efficient work stealerfrom [9] on p processors 
is fi(Si -p-D). ■ 

The corollary follows from Theorem 4.5 and the fact that algo- 
rithm DFDeques behaves like the space-efficient work-stealing 
scheduler for K = oo. Blumofe and Leiserson [9] presented 
an upper bound on space of p • Si using randomized work 
stealing. Their result is not inconsistent with the above corol- 
lary, because their analysis allows only "stack-like" memory 
allocation9, which is more restricted than our model. For such 
restricted dags, their space bound of p • Si also applies directly 
to DFDeques(oo). Our lower bound is also consistent with the 
upper bound of p • S by Simpson and Burton [41], where S is 
the maximum space requirement over all possible depth-first 
schedules; in this example, S = Si ■ D. 

All logarithms denoted as log are to the base 2. 

Their model does not allow allocation of space on a global heap. An in- 
struction in a thread may allocate stack space only if the thread cannot possibly 
have a living child when the instruction is executed. The stack space allocated 
by the thread must be freed when the thread terminates. 
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Figure 10: (a) The dag for which the existential lower bound holds, (b) and (c) present the details of the subgraphs shown in 
(a). The black nodes denote allocations and grey nodes denote deallocations; the nodes are marked with the amount of memory 
(de)allocated. 
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4.3   Time bound 

We now prove the time bound required for a parallel computa- 
tion using algorithm DFDeques. This time bound does not in- 
clude the scheduling costs of maintaining the relative order of 
the deques (i.e., inserting and deleting deques in %), or finding 
the m deque. Elsewhere [33], we describe how the scheduler 
can be parallelized, and then prove the time bound including 
these scheduling costs. We first assume that every action al- 
locates at most A' space, for some constant A', and prove the 
time bound. We then relax this assumption and provide the 
modified time bound at the end of this subsection. 

Lemma 4.7 Consider a parallel computation with work W 
and depth D, in which every action allocates at most K space. 
The expected time to execute this computation on p processors 
using the DFDeques(K) scheduling algorithm is 0(W/p + 
D). Further, for any e > 0, the time required to execute the 
computation is 0(W/p + D + In (1/e)) with probability at 
least 1 — e. 

Proof. Consider any timestep i of the p-schedule; let n, be 
the number of deques in 11 at timestep i. We first classify each 
timestep i into one of two types (A and B), depending on the 
value of m. We then bound the total number of timesteps TU 
and TB of types A and B, respectively. 

Type A: n, > p. At the start of timestep i, let there be r < 
p steal attempts in this timestep. Then the remaining p — r 
processors are busy executing nodes, that is, at least p — r 
nodes are executed in timestep i. Further, at most p — r of the 
leftmost p deques may be empty; the rest must have at least 
one thread in them. 

Let Xj be the random variable with value 1 if the j'h non- 
empty deque in Tl (from the left end) gets exactly one steal 
request, and 0 otherwise. Then, E [Xj] = Pr [Xj = 1] = 
(r/p) ■ (1 — l/p)r_1. Let X be the random variable repre- 
senting the total number of non-empty deques that get exactly 
one steal request. Because there are at least r non-empty de- 
ques, the expected value of X (assuming thatp > 2) is given 
by 

E[X]    >    £E[X>] 
J'=I 

!v- =    r • - -(1- -) 
P P 

r2 1 
> --(1--)P 

P P 

> r--(^1-)-1- p p     e 

> 
2-p-e 

Recall that p — r nodes are executed by the busy processors. 
Therefore, if Y is the random variable denoting the total num- 
ber of nodes executed during this timestep, then 

E[Y]    >    (p-r) + r2/2ep 

>    p/2e 
Therefore,    E [p — Y]    <    p — p/2e 

=    P(l-l/2e) 

The quantity (p — Y) must be non-negative; therefore, using 
the Markov's inequality [32, Theorem 3.2], we get 

Pr[(p-y)>p(l-l/4e)]    < 
E[(P- - Y)] 
p(l- 

h) 

Therefore,  Pr [Y < p/4e]    < 
10 

that is,  Pr [Y > p/4e]    >    — 

We will call each timestep of type A successful if at least 
p/4e nodes get executed during the timestep. Then the proba- 
bility of the timestep being successful is at least 1/10. Because 
there are W nodes in the entire computation, there can be at 
most 4e • W/p successful timesteps of type A. Therefore, the 
expected value for TA is at most 40e • W/p. 

The analysis of the high probability bound is similar to 
that for Lemma 4.2. Suppose the execution takes more than 
80el17p + 40 ln( 1/e) timesteps of type A. Then the expected 
number p of successful timesteps of type A is at least 8eW/p+ 
4 ln(l/e). If Z is the random variable denoting the total num- 
ber of successful timesteps, then using the Chernoff bound [32, 
Theorem 4.2], and setting a = 40eW/p+401n(l/e), we get10 

Pr[Z</i-a/10]    <    exp 

Therefore, 

Pr[Z<4eW/p]    <    e^'200" 

=    exp 

-(a/10)2 

2p 

<    exp 

200(a/5-41n(l/e)) 

„2 

200 • a/5 

<    e 
=    t 

-a/40 

-eVT/p-ln(l/<) 

-Ml/0 

We have shown that the execution will not complete even after 
80eW/p + 40 In (1/e) type A timesteps with probability at 
most e. Thus, for any e > 0, TA = 0(W/p + ln(l/e)) with 
probability at least 1 — e. 

Type B: n, < p. We now consider timesteps in which the 
number of deques in H is less than p. As with the proof of 
Lemma 4.2, we split type B timesteps into phases such that 
each phase has between p and 2p — 1 steal attempts. We can 
then use a potential function argument similar to the dedicated 
machine case by Arora et al. [2]. Composing phases from only 
type B timesteps (ignoring type A timesteps) retains the valid- 
ity of their analysis. We briefly outline the proof here. Nodes 
are assigned exponentially decreasing potentials starting from 

As with the proof of Lemma 4.2, we can use the Chernoff bound here be- 
cause each timestep succeeds with probability at least 1/10, even if the exact 
probabilities of successes for timesteps are not independent. 
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the root downwards. Thus, a node at a depth of d is assigned 
a potential of 32 (D ~d), and in the timestep in which it is about 
to be executed on a processor, a weight of 32(D~d)-i_ They 
show that in any phase during which between p and 1p — 1 steal 
attempts occur, the total potential of the nodes in all the deques 
drops by a constant factor with at least a constant probability. 
Since the potential at the start of the execution is 32D_1, the 
expected value of the total number of phases is O(D). The 
difference with our algorithm is that a processor may execute 
a node, and then put up to 2 (instead of 1) children of the node 
on the deque if it runs out of memory; however, this differ- 
ence does not violate the basis of their arguments. Since each 
phase has 0(p) steal attempts, the expected number of steal 
attempts during type B timesteps is O(pD). Further, for any 
e > 0, we can show that the total number of steal attempts 
during timesteps of type B is 0(p ■ (D + ln(l/e))) with prob- 
ability at least 1 — e. 

Recall that in every timestep, each processor either exe- 
cutes a steal attempt that fails, or executes a node from the dag. 
Therefore, if iV3teai is the total the number of steal attempts 
during type B timesteps, then TB is at most (W + Nstea.i)/p- 
Therefore, the expected value for TB is 0(W/p + D), and for 
anye > 0, the number of timesteps is 0(W/p+D+ln(l/e)) 
with probability at least 1 — e. 

The total number of timesteps in the entire execution is 
TA + TB- Therefore, the expected number of timesteps in 
the execution is 0(W/p + D). Further, combining the high 
probability bounds for timesteps of type A and B, (and using 
the fact that P(A uB)< P(A) + P(B)), we can show that 
for any e > 0, the total number of timesteps in the parallel 
execution is 0(W/p + D + ln(l/e)) with probability at least 
1 - e. ■ 

To handle each large allocation of m units (where m > 
K), recall that we add [m/A'J dummy threads; the dummy 
threads are forked in a binary tree of depth 0(log(m/A')). 
Because we assume a depth of ©(log m) for every allocation 
of m bytes, this transformation of the dag increases its depth 
by at most a constant factor. If Sn is the total space allocated 
in the program (not counting the deallocations), the number of 
nodes in the transformed dag is atmostVK+S0/A'. Therefore, 
using Lemma4.7, the modified time bound is stated as follows. 

Theorem 4.8 (Upper bound on time requirement) 
The expected time to execute a parallel computation with W 
work, D depth, and total space allocation Sa on p processors 
using algorithm DFDeques(K) is 0(W/p + Sa/pK + D). 
Further, for any e > 0, the time required to execute the com- 
putation is 0(W/p+Sa/pK + D + ]n(l/e)) with probability 
at least 1 — e. 

In a system where every memory location allocated must be 
zeroed, Sa = 0(W). The expected time bound therefore be- 
comes 0(W/p + D). This time bound, although asymptoti- 
cally optimal [10], is not as low as the time bound of W/p + 
0(D) for work stealing [9]. 

Trade-off between space, time, and scheduling granular- 
ity. As the memory threshold K is increased, the scheduling 
granularity increases, since a processor can execute more in- 
structions between steals. In addition, the number of dummy 
threads added before large allocations decreases. However, the 
space requirement increases with K. Thus, adjusting the value 
of K provides a trade-off between running time (or scheduling 
granularity), and space requirement. 

5   Experiments with Pthreads 

We implemented the scheduler as part of an existing library 
for Posix standard threads or Pthreads [23]. The library is 
the native, user-level Pthreads library on Solaris 2.5 [38, 43]. 
Pthreads on Solaris are multiplexed at the user level on top of 
kernel threads, which act like virtual processors. The original 
scheduler in the Pthread library uses a FIFO queue. Our ex- 
periments were conducted on an 8 processor Enterprise 5000 
SMP with 2GB main memory. Each processor is a 167 MHz 
UltraSPARC with a 512 kB L2 cache. 

Having to support the general Pthreads functionality pre- 
vents even a user-level Pthreads implementation from being 
extremely lightweight. For example, a thread creation is two 
orders of magnitude more expensive than a null function call 
on the UltraSPARC. Therefore, the user is required to create 
Pthreads that are coarse enough to amortize the cost of thread 
operations. However, with a depth-first scheduler, threads at 
this granularity had to be coarsened further to get good parallel 
performance [35]. We show that using algorithm DFDeques, 
good speedups can be achieved using Pthreads without this 
additional coarsening. Thus, the user can now fix the thread 
granularity to amortize thread operation costs, and expect to 
get good parallel performance in both space and time. 

The Pthreads model supports a binary fork and join mech- 
anism. We modified memory allocation routines malloc and 
free to keep track of the memory quota of the current pro- 
cessor (or kernel thread) and to fork dummy threads before 
an allocation if required. Our scheduler implementation is 
a simple extension of algorithm DFDeques that supports the 
full Pthreads functionality (including blocking11 mutexes and 
condition variables) by maintaining additional entries in H for 
threads suspended on synchronizations. Our benchmarks are 
predominantly nested parallel, and make limited use of mu- 
texes and condition variables. For example, the tree-building 
phase in Barnes-Hut uses mutexes to protect modifications to 
the tree's cells. However, the Solaris Pthreads implementation 
itself makes extensive use of blocking synchronization primi- 
tives such as Pthread mutexes and condition variables. 

Since our execution platform is an SMP with a modest 
number of processors, access to the ready threads in H was 
serialized. H is implemented as a linked list of deques pro- 
tected by a shared scheduler lock. We optimized the common 
cases of pushing and popping threads onto a processor's cur- 
rent deque by minimizing locking time. A steal requires the 
lock to be acquired more often and for a longer period of time. 

In the existing Pthreads implementation, it is not always 
possible to place a reawakened thread on the same deque as the 
thread that wakes it up; therefore, our implementation of DFD- 
eques is an approximation of the pseudocode in Figure 5. Fur- 
flier, since we serialize access to 11, and support mutexes and 
condition variables, setting the memory threshold K to infin- 
ity does not produce the same schedule as the space-efficient 
work-stealing scheduler intended for fully strict 
computations [9]. Therefore, we can use this setting only as 
a rough approximation of a pure work-stealing scheduler. 

We first list the benchmarks used in our experiments. Next, 
we compare the space and time performance of the library's 
original scheduler (labelled "FIFO") with an asynchronous, 
depth-first scheduler [35] (labelled "ADF'), and the new DFD- 
eques scheduler (labelled "DFD") for a fixed value of the mem- 
ory threshold K. We also use DFDeques(oo) as an approx- 

We use the term "blocking" for synchronization that causes the calling 
thread to block and suspend, rather than spin wait. 
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imation for a work-stealing scheduler (labelled "DFD-inf'). 
To study how the performance of the schedulers is affected by 
thread granularity, we present results of the experiments at two 
different thread granularities. Finally, we measure the trade- 
off between running time, scheduling granularity, and space 
for algorithm DFDeques by varying the value of the memory 
threshold K for one of the benchmarks. 

5.1 Parallel benchmarks 

The benchmarks were either adapted from publicly available 
coarsegrained versions [19,36,42,46], or written from scratch 
using the lightweight threads model [35]. The parallelism in 
both divide-and-conquer recursion and parallel loops was ex- 
pressed as a binary tree of forks, with a separate Pthread cre- 
ated for each recursive call. Thread granularity was adjusted 
by serializing the recursion near the leafs. In the comparison 
results in Section 5.2, medium granularity refers to the thread 
granularity that provides good parallel performance using the 
depth-first scheduler [35]. Even at medium granularity, the 
number of threads significantly exceeds the number of proces- 
sors; this allows simple coding and automatic load balancing, 
while resulting in performance equivalent to hand-partitioned, 
coarse-grained code using the depth-first scheduler [35]. Fine 
granularity refers to the finest thread granularity that allows the 
cost of thread operations in a single-processor execution to be 
up to 5% of the serial execution time12. The benchmarks are 
volume rendering, dense matrix multiply, sparse matrix multi- 
ply, Fast Fourier Transform, Fast Multipole Method, Barnes- 
Hut, and a decision tree builder13. Figure 11 lists the total 
number of threads expressed in each benchmark at both the 
thread granularities. 

5.2 Comparison results 

In all the comparison results, we use a memory threshold of 
K = 50,000 bytes for "ADF" and "DFD"1*. Each active 
thread is allocated a minimum 8kB (1 page) stack. Therefore, 
the space-efficient schedulers effectively conserve stack mem- 
ory by creating fewer simultaneously active threads compared 
to the original FIFO scheduler (see Figure 11). The FIFO 
scheduler spends significant portions of time executing system 
calls related to memory allocation for the thread stacks [35]; 
this problem is aggravated when the threads are made fine 
grained. 

The 8-processor speedups for all the benchmarks at medium 
and fine thread granularities are shown in Figure 12. To con- 
centrate on the effect of the scheduler, and to ignore the ef- 
fect of increased thread overheads (up to 5% for all except 
dense matrix multiply) at the fine granularity, speedups for 
each thread granularity are with respect to the single-processor 
multithreaded execution at that granularity. The speedups show 
that both the depth-first scheduler and the new DFDeques sched- 
uler outperform the library's original FIFO scheduler. How- 
ever, at the fine thread granularity, the new scheduler provides 
better performance than the depth-first scheduler. This differ- 
ence can be explained by the better locality and lower schedul- 
ing contention experienced by algorithm DFDeques. 

12The exception was the dense matrix multiply, which we wrote for n x n 
blocks, where n isapoweroftwo. Therefore, fine granularity involved reducing 
the block size by a factor of 4, and increasing the number of threads by a factor 
of 8, resulting in 10% additional overhead. 

''Details on the benchmarks can be found elsewhere [33]. 
In the depth-first scheduler, the memory threshold K is the memory quota 

assigned to each thread between thread preemptions [35]. 
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Figure 12: Speedups on 8 processors with respect to single- 
processor executions for the three schedulers (the original 
"FIFO", the depth-first "ADF', and the new "DFD" or 
DFDeques) at both medium and fine thread granularities, 
with K = 50,000 bytes. Performance of "DFD-inf (or 
DFDeques(oo)), being very similar to that of "DFD", 
is not shown here. All benchmarks were compiled us- 
ing cc -fast -xarch=v8plusa -xchip=ultra 
-xtarget=native   -x04. 
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Benchmark Input size Medium grained Fine grained 
total FIFO ADF DFD total FIFO ADF DFD 

Vol. Rend. 2563 vol, 3752 img 1427 195 29 29 4499 436 36 37 
Dense MM 1024 x 1024 doubles 4687 623 33 48 37491 3752 55 77 

Sparse MVM 30Knodes, 151K edges 1263 54 31 31 5103 173 51 49 
FFTW 7V=222 177 64 13 18 1777 510 30 33 
FMM N = WK, 5mplterms 4500 1314 21 29 36676 2030 50 54 

Barnes Hut N - 100Ä", Plmr model 40893 1264 33 106 124767 3570 42 120 
Decision Tree 133,999 instances 3059 82 60 77 6995 194 138 149 

Figure 11: Input sizes for each benchmark, total number of threads expressed in the program at medium and fine granularities, and 
max. number of simultaneously active threads created by each scheduler at both granularities, for K = 50,000 bytes. "DFD-inf' 
creates at most twice as many threads as "DFD" for Dense MM, and at most 15% more threads than "DFD" for the remaining 
benchmarks. 
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Figure 13: Variation of the memory requirement with the num- 
ber of processors for dense matrix multiply using three sched- 
ulers: depth-first ("ADF"), DFDeques ("DFD"), and Cilk 
("Cilk"). 

We measured the external (L2) cache miss rates for each 
benchmark using on-chip UltraSPARC performance counters. 
Figure 1, which lists the results at the fine thread granularity, 
shows that our scheduler achieves relatively low cache miss 
rates (i.e., results in better locality). 

Three out of the seven benchmarks make significant use 
of heap memory. For these benchmarks, we measured the 
high water mark for heap memory allocation using the three 
schedulers. Figure 14 shows that algorithm DFDeques results 
in slightly higher heap memory requirement compared to the 
depth-first scheduler, but still outperforms the original FIFO 
scheduler. 

The Cilk runtime system [20] uses a provably space-efficient 
work stealing algorithm to schedule threads15. Figure 13 com- 
pares the space performance of Cilk with the depth-first and 
DFDeques schedulers for the dense matrix multiply bench- 
mark (at the fine thread granularity). The figure indicates that 
DFDeques requires more memory than the depth-first sched- 
uler, but less memory than Cilk. In particular, similar to the 
depth-first scheduler, the memory requirement of DFDeques 
increases slowly with the number of processors. 

5.3   Measuring the tradeoff between space, time, and 
scheduling granularity 

We studied the effect of the size of memory threshold K on 
the running time, memory requirement, and scheduling granu- 

15Because Oik requires gcc to compile the benchmarks (which results in 
slower code for floating point operations compared to the native cc compiler 
on UltraSPARCs), we do not show a direct comparison of running times or 
speedups of Cilk benchmarks with our Pthreads-based system here. 

larity using DFDeques(K). Each processor keeps track of the 
number of times a thread from its own deque is scheduled, and 
the number of times it has to perform a steal. The ratio of these 
two counts, averaged over all the processors, is our approx- 
imation of the scheduling granularity. The trade-off is best 
illustrated in the dense matrix multiply benchmark, which al- 
locates significant amounts of heap memory. Figure 15 shows 
the resulting trade-off for this benchmark at the fine thread 
granularity. As expected, both memory and scheduling gran- 
ularity increase with K, while running time reduces as K is 
increased. 

6   Simulating the schedulers 

To compare algorithm DFDeques with a work-stealing sched- 
uler, we built a simple system that simulates the parallel execu- 
tion of synthetic, nested-parallel, divide-and-conquer bench- 
marks16. Our implementation simulates the execution of the 
space-efficient work-stealing scheduler [9] (labeled "WS"), the 
space-efficient, asynchronous depth-first scheduler [34] ("ADF'), 
and our new DFDeques scheduler (labeled "DFD"). 

Due to limited space, we present results for only one of 
the synthetic benchmarks here17, in which both the memory 
requirement and the thread granularity decrease geometrically 
down the recursion tree. A number of divide-and-conquer 
programs exhibit such properties. Scheduling granularity was 
measured as the average number of actions executed by a pro- 
cessor between two steals. Figure 16 shows that work stealing 
results in high scheduling granularity and high space require- 
ment, the depth first scheduler results in low scheduling gran- 
ularity and low space requirement, while DFDeques allows 
scheduling granularity to be traded with space requirement by 
varying the memory threshold K. 

7   Summary and Discussion 

Depth-first schedulers are space-efficient, but unlike work- 
stealing schedulers, they require the user to explicitly increase 
the thread granularity beyond what is required to amortize 
basic thread costs. In contrast, algorithm DFDeques auto- 
matically increases the scheduling granularity by executing 

16To model irregular applications, the space and time requirements of a thread 
at each level of the recursion are selected uniformly at random with the specified 
mean. 

Results for other benchmarks and a detailed description of the simulator can 
be found elsewhere [33]. 
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Figure 14: High water mark of heap memory allocation (in MB) on 8 processors for benchmarks involving dynamic memory 
allocation (A' = 50,000 bytes for "ADF" and "DFD"), at both thread granularities. "DFD-inf is our approximation of work 
stealing using DFDeques(oo). 
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Figure 15: Trade-off between running time, memory allocation and scheduling granularity using algorithm DFDeques as the 
memory threshold K is varied, for the dense matrix multiply benchmark at fine thread granularity. 
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Figure 17: Speedups for the tree-building phase of Barnes 
Hut (for IM particles). The phase involves extensive use of 
locks on cells of the tree to ensure mutual exclusion. The 
Pthreads-based schedulers (all except Cilk) support blocking 
locks. "DFD" does not result in a large scheduling granular- 
ity due to frequent suspension of the threads on locks; there- 
fore, its performance is similar to that of "ADF". Cilk [20] 
uses a pure work stealer and supports spin waiting locks. For 
this benchmark, the single-processor execution time on Cilk is 
comparable with that on the Pthreads-based system. 

neighboring, fine-grained threads on the same processor to 
yield good locality and low scheduling contention. In the- 
ory, for nested-parallel programs with a large amount of par- 
allelism, algorithm DFDeques has a lower space bound than 
work-stealing schedulers. We showed that in practice, it re- 
quires more memory than a depth-first scheduler, and less mem- 
ory than work stealing. DFDeques also allows the user to con- 
trol the trade-off between space requirement and running time 
(or scheduling granularity). Because algorithm DFDeques al- 
lows more deques than processors, it can be easily extended 
to support blocking synchronizations. For example, prelimi- 
nary results on a benchmark which makes a significant use of 
locks, indicate that DFDeques with blocking locks results in 
better performance than a work stealer that uses spin-waiting 
locks (see Figure 17). 

Since Pthreads are not very lightweight, serializing access 
to the set of ready threads 11 did not significantly affect the 
performance in our implementation. However, serial access 
to H can become a bottleneck if threads are extremely fine 
grained, and require frequent suspension due to memory allo- 
cation or synchronization. To support such threads, the schedul- 
ing operations (such as updates to H) need to be parallelized [33]. 

Each processor in DFDeques treats its deque as a regular 
stack. Therefore, in a system that supports very lightweight 
threads, the algorithm should benefit from stack-based opti- 
mizations such as lazy thread creation [21, 31]; these meth- 
ods avoid allocating resources for a thread unless it is stolen, 
thereby making most thread creations nearly as cheap as func- 
tion calls. 

Increasing scheduling granularity typically serves to en- 
hance data locality on SMPs with limited-size, hardware- 
coherent caches. However, on distributed memory machines 
(or software-coherent clusters), executing threads where the 
data permanently resides becomes important. A multi-level 
scheduling strategy may allow the thread implementation to 
scale to clusters of SMPs. For example, the DFDeques al- 
gorithm could be deployed within a single SMP, while some 
scheme based on data affinity is used across SMPs. 

An open question is how to automatically find the appro- 
priate value of the memory threshold K, which may depend on 
the benchmark, and on the thread implementation. One pos- 
sible solution is for the user (or the runtime system) to set K 
to an appropriate value after running the program for a range 

of values of K on smaller input sizes. Alternatively, it may be 
possible for the system to keep statistics to dynamically set K 
to an appropriate value during the execution. 
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